
NASA/CR- 1998-208733

ICASE Report No. 98-45

Parallel Directionally Split Solver Based on

Reformulation of Pipelined Thomas Algorithm

A. Povitsky

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

October 1998



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical In_'ormation Service (NTIS)

5285 Port Royal Roac

Springfield, VA 22161-2171
(703) 487-4650



PARALLEL DIRECTIONALLY SPLIT SOLVER BASED ON REFORMULATION OF

PIPELINED THOMAS ALGORITHM

A. POVITSKY *

Abstract. A very efficient direct solver, known as the Thomas algorithm, is frequently used for the

solution of band matrix systems that typically appear in models of mechanics. The processor idle time is a

reason for the poor parallelization efficiency of the solvers based on the pipelined parallel Thomas algorithms.

In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The

proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the

backward step computations immediately after the completion of the forward step computations for the first

portion of lines. This algorithm has data available for other computational tasks while processors are idle

from the Thomas algorithm.

The proposed 3-D directionally split solver is based on the static scheduling of processors where local and

non-local, data-dependent and data-independent computations are scheduled while processors are idle. A

theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show

an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains.

It is shown by computational experiments and by the theoretical model that the proposed algorithm

reduces the parallelization penalty about two times over the basic algorithm for the range of the number of

processors (subdomains) considered and the number of grid nodes per subdomain.

Key words, parallel computing, parallelization model, directionally split methods, pipelined Thomas

Algorithm, banded matrices, ADI and FS mcthods

Subject classification. Computer Science

1. Introduction. Efficient solution of directionally split banded matrix systems is essential to multi-

grid, compact, and implicit solvers. When the implicit schemes are applied to multi-dimensional problems,

the operators are separated into one-dimensional components and the scheme is split into two (for 2-D

problems) or three (for 3-D problems) steps, each one involving only the implicit operations originating

from a single coordinate [1]. These numerical algorithms are denoted as fractional step (FS) or alternating

direction implicit (ADI) methods.

According to D. Caughey, the development of implicit CFD algorithms suitable for distributed memory

machines will become increasingly important in the future. The parallelization of implicit schemes will require

more ingenuity if they are to remain competitive with parallel explicit schemes. The interplay between the

data structures, the memory assignment among processors, and its access by the flow solver will require a

truly interdisciplinary approach to produce effective algorithms [2].

For block-banded systems the LU decomposition method leads to an efficient serial direct algorithm

known as the Thomas algorithm. Parallelization of implicit solvers that use the Thomas algorithm for

the solution of banded system of equations is hindered by global data dependencies. Parallel versions of

the Thomas algorithm are of the pipelined type [3]. Pipelines occur due to the recurrence of data at the

*Staff Scientist, ICASE, NASA Langley Research Center, Hampton, VA 23681-0001 (e-maihaeralpo(_icase.edu) This research
was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the author

was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, VA 23681-2199.



forwardandthebackwardstepcomputationsoftheThomasalgorithm.Duringthepipelinedprocessthefirst
processorhasto waitfor thecompletionoftheforwardstepcomputationsandcompletionofthebackward
stepcomputationsfor thefirst groupoflinesonallprocessorsahead.Thus,thefirstprocessorbecomesidle
at theswitchfromtheforwardto thebackwardstepof theThomasalgorithm.In turn,thelastprocessor
hasto waitforavailabledataat thebeginningof eachspatialstep.

Theuseof thepipelinedThomasalgorithm(PTA)resultsin communicationbetweenneighboringpro-
cessorsdueto thetransferof coefficientsontheforwardstepandtransferof solutiononthebackwardstep.
Onemayuseaseparatemessageaftercompletionoftheforwardorbackwardstepforasingleline,however,
thisresultsin themaximumcommunicationtimelatencyoverhead.Ontheotherhand,reducingthelatency
overheadbysendingdatafrommorethanonelinein eachmessageincreasesthedatadependencydelay
effectandprocessoridletime. Thislatencyanddatadependencydelaytradeoffdeterminestheoptimum
numberoflinesto becompletedbeforeamessageis sentto theneighboringprocessor[4],[5].V. Nalketal
[4]definedthisoptimumnumberof linesandusedit in theirparallelizationofanimplicitfinite-difference
codefor solvingEulerandthin-layerNavier-Stokesequations.Still, thereis theprocessoridletimebetween
theforwardandthebackwardstepcomputationsandglobals)tnchronizationof processorsat eachspatial
stepof theADI.Thisparallelimplicitdirectionallysplit algorRhmisreferredto asthebasicalgorithmin
thisstudy.

In ourrecentstudy[6],weformulatedanewversionoftheThomasparallelalgorithmnamedtheImmedi-
ateBackwardPipelinedThomasAlgorithm(IB-PTA).Thebackwardstepcomputationsbeginimmediately
aftertheforwardstepcomputationshavebeencompletedfor thefirst portionof lines.Somelineshave
beenrenderedbytheThomasalgorithmbeforeprocessorsbecomeidle.AlthoughtheIB-PTAcannotreduce
theprocessoridletime,therearedataavailableforothercom_utationaltaskswhilcprocessorsareidle.A
multi-dimensionalnumericalalgorithmusingtheIB-PTAinea,:hspatialdirectioncanrunonprocessorsin
thetime-staggeredmannerwithouta globalsynchronization(thefirst processorfinishesits computations
first at eachtimestep).Thedevelopmentofsuchalgorithmisaddressedin thisstudy.

Variouscomputationaltasksarcexaminedfor executionwhileprocessorsareidle fromtheThomas
algorithmin thecurrentdirection.Thesetasksmayinclude:(i) ,'omputationoftheleft-handsidecoefficients
for thenextspatialstage,includingcomputationof dampingfunctionsandnon-linearTVD evaluations;
(ii) computationof theright-handsidecoefficients,for example,multiplicationsofintermediateFSorADI
functionsbytransformationmetricsofcurvilineargrids;and(iii) executionoftheforwardstepcomputations
oftheThomasalgorithmin thenextspatialdirection.Thesetasksareclassifiedhereaseitherdata-dependent
(usingthelastspatialstepsolution)ordata-independent.

Wedevelopa theoreticalmodelto estimateaparallelizationefficiencyoftheproposedalgorithm.Such
modelsarerecognizedasa quantitativebasisforthedesignof parallclalgorithms.Webaseourmodelon
theidealizedmulticomputerparallelarchitecturemodel[7]. I ow-levelhardwaredetailssuchasmemory
hierarchiesandthetopologyof theinterconnectionnetworkar_not introducedin themodel.Thismodel
is usedhereto definetheoptimalnumberofsolvedlinespermessage,to provideasymptoticanalysisand
to estimateofparallelizationefficiencyfor a largenumberof pr_)cessorswhicharenotavailableyet,andto
comparetheproposedalgorithmwith the basicone.First, th.smodelis usedfor a cubicglobaldomain
(equalnumberof grid nodesin all directions).Thenanoptimalpartitioningfor a globaldomainwith
unequalnumberof grid nodesin differentdirectionsis obtainedbasedon this model.Togeta unified
approachfor variousMIMD computers,resultsarepresentedin termsof ratiosbetweencommunication
latencyandtransfertimesto thebackwardstepcomputationtimepergridnode.Theseratioswereusedin

2



studies[8]and[9]forthecomplexityanalysisofvariousparallelalgorithmsfornumericalsolutionsofpartial
differentialequations(PDE).

Asthedevelopmentofacomputerprogrambytheproposedalgorithmmayrepresentcertaindifficulties,
wedesigna parallelcomputercodeusingmodulardesigntechniques[7]andpresentit here.Wcgenerate
staticscheduleofprocessorsfortheIB-PTAinasingledirectionbymethodsdescribedin ourstudy[6]and
fashionschedulesofthepipelinedThomasalgorithmindifferentdirectionstogetherwithlocalcomputational
tasks.Performingcorecomputationsof thealgorithm,processorsaregovernedby this staticschedule.
Computationsareseparatedfrom communicationbetweenprocessors.Onecanswitchto othertypeof
bandedmatrixsystemtobesolved,methodofcomputingdiscretizedcoefficientsofPDE,typeofdirectionally
splitmethod,otherscheduleof processors,or typeofmessage-passinglibrarychangingonlycorresponding
modulesofthecode.

Thispaperis composedof thefollowingsections.In section2,theparallelizationmethodisdescribed.
In section3, thetheoreticalmodelofparallelizationefficiencyis developedfor2-Dand3-Dcomputational
domains.In section4,theparallelizationmethodandthetheoreticalmodelof theparallelizationefficiency
aretestedandverifiedbya numericalsolutionofabenchmarkproblemonCRAY T3E and IBM SP MIMD

computers.

2. Formulation of the algorithm.

2.1. Mathematical formulation. Consider a non-linear partial differential equation

(1) dU
dt S(U)U + Q

where t is the time, S(U) = Sx(U) + Sy(U) + Sz(U) is a spatial differential operator and Q is a source term.

As an example of a directionally split method we consider the fractional step (FS) method. The method is

based on a factorization of the Crank-Nieholson scheme, where the factorized scheme is solved in three steps

as a succession of one-dimensional Crank-Nicholson schemes:

(1 - 0.5AtS.)U _+_ = (1 + 0.5AtS.)U '_ + AtQ

(1 - 0.5AtSy)U n+l = (1 + 0.5AtSy)U n+1

(2) (1 -- 0.5AtSz)U n+l -_ (1 + 0.5AtSz)U n+l,

where Sx, Sy and Sz are linear finite-difference operators in the x, y and z directions, respectively, and

U '_+[, U n+l are intermediate FS functions.

Second-order finite-difference formulation of this system leads to band tri-diagonal system of linear

equations

(3) ai,j,k Vi- l,j,k -_- bi,j,k Vi,j,k _- Ci,j,k Vi + l ,j,k : f i,j,k ,

where i, j, k are spatial grid nodes, coefficients ai,j,k, bi,j,k and c_,j,k are functions of U n and/or time, f_,j,k

is the r.h.s, of equations (2). The above system of linear equations corresponds to the first spatial step of

Eqs. (2). The similar banded linearized systems must be solved for the second and the third spatial steps of

the FS.



Thissystemof N 3 equations is considered as g 2 systems of N equations where each system of N

equations corresponds to j, k = const. Therefore, the scalar tridiagonal version of the Thomas algorithm is

used to solve each system of N equations. The forward step of the Thomas algorithm for this system is

dl,j,k =- bl j,k, did& = bi j k - ai,j,k ca- d'k i = 2, ..., Ntot_
' ' ' di- ;.,j,k '

(4) gl,j,k- flj,k, gid,k = --aid,kgi-l,j,k + Si,j,k , i = 2, ..., Ntotx,
dl,j,k did&

where Ntotx is the number of grid nodes in the x direction. The backward step of the Thomas algorithm is

ai,j,k
(5) UN,j,k = gN,j,k, Ui,j,k = gi,j,k -- Ui+l,j,k _, k = Ntotx - 1, ..., 1

The solution of this banded system of N equations is also denoted as the rendering of the line (j, k).

2.2. Pipelined Thomas algorithms. To parallelize the Thomas algorithm, the coefficients of Eq.

(3) are mapped into processors so that the subset {aid,k, bij,k, ca,j,kl i = N(I - 1) + 1,...,NI, j :

N(J - 1) + 1, ..., N J, k = N(K - 1) + 1, ..., NK} belongs to the (I, J, K) th processor. The computational

domain is divided to NI x Nj x NK subdomalns with N × N _ N grid nodes each one.

The Pipelined Thomas Algorithm (PTA) [4] is cited shortly. The (I, J, K) th processor receives coefficients

dg(l-1),j,k, gN(l-1),j,k from the (I- 1, J,g) th processor; computes coefficients did,k and gl,j,k, where I =

N(I - 1) + 1, ...,NI of the forward step of the Thomas algorithm, sends coefficients d(NI, j, k), g(NI, j, k)

to the (I + 1, J, K) th processor and repeats computations (4) :mtil the forward step computations for the

N 2 fines are completed. After completion of all the forward step computations specific to a single processor,

the (I, J, K) th processor has to wait for the completion of the forward step by all processors ahead. The

backward step computations (5) are performed in the similar manner as the forward step computations but

in the decreasing direction. The lines (j, k) are gathered in groups and the number of lines is solved per

message. Processors are idle between the forward and the ba,:kward steps of the Thomas algorithm and

there are no data available for other computational tasks by th:s time.

The Immediate Backward Thomas Pipeline Algorithm (IB-PTA) has been developed in our study [6]

and is described here briefly. First, groups of lines are rendered by the forward step computations (see above)

till the first group of lines is completed on the last processor. Then the backward step computations for each

group of lines begin immediately after the completion of the forward step computations for these lines. Each

processor switches between the forward and backward steps of th_ Thomas algorithm and communicates with

its neighbors to receive necessary data for beginning of either th_ forward or the backward computations for

the next portion of lines. Finally, remaining lines are rendered b: r the backward step computations and there

are no available lines for the forward step computations. It was shown [6] that the idle time is the same for

the IB-PTA and the basic PTA when these algorithms are used in a single direction. The advantage of the

IB-PTA is that processors become idle after completion of subset lines. At this time processors can be used

for other computational tasks requiring these data, as described in the following subsection.

2.3. Schedule of processors for directionally split problem. The basic algorithm is executed

in the y and z directions the same way as in the x direction. After completion of all Thomas algorithm

computations in the last spatial direction, processors compute S(U) operators. Communications control

computational tasks as either the forward step coefficients or tie backward step solution must be obtained

from the neighboring processors for the beginning of either the t)rward or the backward step computations,

and there are no other computational tasks while processors wa t for these data.



Thisisno longerthecasefortheproposedalgorithm,becauseprocessorsexecuteothercomputational
taskswhiletheseprocessorsareidle. Additionally,thesetasksmightbemanifold,andtheidleprocessor
timesaredifferentforthedifferentprocessors.Therefore,thestaticschedulingof processorsis adoptedin
thisstudy,i.e.,thecommunicationandcomputationsscheduleof processorsis computedbeforenumerical
computationsareexecuted.

Wedefineatimeunit asa timeintervalwhenaprocessoreitherrendersagroupof linesbyonetypeof
computationsor is idle.Processorsmaycommunicateonlyat thebeginningofthetimeunit. Thelengthof
a timeunit is thesameforall processors.Thisscheduleof processorsincludestheorderof computational
tasksoneachprocessorandtheorderofcommunicationwith its neighbors.

Typesof computationsin thisstudyincludenon-local(theforwardstepcomputationsandtheback-
wardstepcomputationsof the ThomasAlgorithm)andlocal(computationsof spatialoperatorsS(U) or

computations of the right hand side (r.h.s.) of equations (2)). Most of considered computational tasks,

namely, all the Thomas algorithm computations, local computations of the r.h.s., and local computations of

spatial operators at the end of a time step use results of the Thomas algorithm computations in the last ren-

dered direction, i.e., these tasks are data-dependent. However, computations of the Sy and S_ operators are

data-independent from the results of the Thomas algorithm computations in the directions x and y. These

operators depend upon solution U _ and do not depcnd upon intermediate functions U '_+1 and U _+1. Both

data-dependent and data-independent tasks may be executed while processors are idlc from the Thomas

algorithm. However, the practical realization is different for data-dependent, data-independent, local and

non-local tasks. Additionally, each type of computations has a different computational time per grid nodc;

therefore, the number of rendered lines per time unit are different for various types of computations (see the

next section about calculation of these numbers).

Computations are governed by an integer-valued variable:

4 local computations

(6) J(p, i) = +l forward step computations
0 processor is idle

-l backward step computations

where p is the processor number, i is the number of time unit, l -- 1, 2, 3 corresponds to the directions x, y

and z, respectively.

A scheduling algorithm for PTAs in a single direction has been developed in our study [6]. The processor

schedule for a subset of Ng processors {(I, J, 1), ..., (I, J, NK)} that form a pipeline for the Thomas algorithm

computations in the z direction is shown in Fig. 1. It is assumed, that the computational time per grid node

is equal for the forward and the local computations and it is 1.5 times greater than that for the backward

step computations. Therefore, the number of portions of lines for the forward step computations is equal to

that for the local computations, whereas the number of portions of lines for the backward step computations

is 1.5 times less. The column of values J(K, i) corresponds to the K th processor (from 1 to NK). Columns

are shifted so as each horizontal line corresponds to a single time moment in terms of wall clock. Arrows

- - - >, < - - - and < -- > denote send, receive and send-receive communications between neighboring

processors in this processor pipeline.

The processor schedule corresponds to the execution of the Thomas algorithm in the direction z and the

local, data-dependent computations of the Sz(U n) operator for the next time step. The proposed algorithm

is based on the IB-PTA and uses the processor idle time for the computations of the operator Sx. Processors

run the proposed algorithm in a time-staggered way so that the first outermost processor (I, J, 1) completes



its computationsfirst andprocessorsdonot become idle (Fig. ia). For the basic algorithm, the operator S_

can be computed only after the completion of the PTA for all lines (Fig. lb). The first outermost processor

completes computations last due to the idle time between the forward and the backward steps (Fig. lb).

Thus, Fig. 1 illustrates the main advantage of the proposed algorithm over the basic one.

The other schedule of processors includes the forward step computations of the Thomas algorithm in

the next direction while processors are idle from the Thomas a:igorithm in the current direction. To make it

feasible, the grid nodes rendered by the Thomas algorithm in the current direction must form a contiguous
extend in the next direction.

To execute the Thomas algorithm in the x direction, the set ofN 2 lines {(j, k),j = 1, ..., N, k = 1, ..., N}

is gathered in groups in such a way that non-rendered lines with the minimum value of index k are taken

first. For example, consider the subdomain with 143 nodes where the 142 = 196 lines are gathered in the 17

groups (see Fig 2a). Each group contains the 12 lines except the last, 17 th group. To execute the Thomas

algorithm in the x direction, lines are gathered in groups by this method that secures a contiguous extent

in the y direction.

The schedule of processors corresponding to this case is shown in Fig. 3. The first two processors

have idle time (denoted as 0) between the forward and the backward steps and the first processor does not

complete its tasks first. The reason is that there are no completed lines while these processors become idle.

The straightforward way to remedy the problem of idle processors is to reduce the number of lines per group.

However, the communication latency time increases as more messages have to be transfered.

Consider the case where processors are used for the Thomas algorithm computations in the next direction

while they are idle repeatedly for the x and y directions. In addition to the previous case, executing the

Thomas algorithm computations in the y direction, the algorithm gathers lines so as to form a contiguous

extend of nodes in the z direction. Therefore, the set of N 2 lines {(i, k), i = 1, ..., N, k = 1, ..., N} is gathered

in groups in such a way that non-rendered lines with the minimum value of index i are taken first.

Consider the previous example (Fig 2a-b). The first 8 groups of lines must be completed in the current

direction before processors become idle. Otherwise, processors stay idle when they perform computations

in the y direction waiting for a contiguous extend of grid nodes in the z direction. This causes a severe

restriction on the maximum number of lines per group.

Thus, scheduling of data-dependent computations while pr,,cessors are idle from the Thomas algorithm

may lead to restrictions of the number of lines per group. By scheduling data-independent computations

while processors are idle we avoid these restrictions. In the cmtsidered case of FS, computations of the Sy

and Sz operators while processors are idle from the Thomas algorithm in the x and y directions are data-

independent. Both the IB-PTA and the PTA with the processor scheduling may be adopted for the two first

stages of the FS. Still, the IB-PTA is essential for the last stag_ of the FS.

The following recommendations with regard to the proces _or scheduling are drawn for non-linear FS

methods:

• If computational time per grid node is greater for the local c _mputations than that for the forward step

computations, the spatial operators are computed for a subset )f grid nodes while processors are idle from

the Thomas algorithm. Coefficients for the rcst of nodes are co nputed after the completion of the Thomas

algorithm for all lines in the current direction. These computatio_ls are local; therefore, they do not contribute

to the parallelization penalty time.

• If local computations are partly data-independent (computatk ns of the 1.h.s. coefficients) and partly data-

dependent (computations of the r.h.s.), then the data-indepem ent computations are scheduled to execute



firstwhileprocessorsareidle.
• If data-independentcomputationtimepergridnodeis lessthantheforwardstepcomputationaltimeper
gridnodeandgreaterthanahalfofthelattertime,thenthecomputationsof theS_ and Sz arc scheduled

while processors are idle in the x direction. The Thomas algorithm computations in the z direction are

scheduled while processors are idle in the y direction.

For the systems of the Euler or Navier-Stokes equations these suggestions can be applied as follows.

A typical large-scale aerodynamics code ARC-3D [4], [11] includes three dimensional solution of a system

of five PDE and uses two versions of ADI. The first version is the original Beam-Warming Approximate

Factorization scheme [12] leading to the block tri-diagonal Thomas algorithm operating with 5 x 5 blocks.

The other version is based on the diagonalization technique of Pulliam and Chaussee [13], leading to the

decoupling of variables and solution of 5 penta-diagonal scalar systems in each direction. Naik et al measured

the elapsed CPU time and number of floating point operations for these two versions ([4],Table 2). Presented

there are the following results important for our study: (i) the cost of implicit part of the solver (including

the setup of coefficients of the linear system) is the dominant cost for the two versions; (ii) the cost of the

r.h.s, computations is approximately equal to the total cost of forward step computations in all directions for

the second version; (iii) the cost of coefficients setup is greater than the cost of the forward step computations

for the second version.

For the scalar penta-diagonal version, the setup of coefficients costs much due to nomlinearity of the

original system of equations, use of fourth order numerical viscosity in implicit side, and multiplications of

intermediate ADI functions by curvilinear derivatives. For the block tri-diagonal version, the forward step

computations cost approximately ten times as much as those for the scalar penta-diagonal version.

For the scalar penta-diagonal version, one may use processors for local computations while they are idle

from the Thomas algorithm. These local computations include data-independent computations of discretized

coefficients and data-dependent multiplications of intermediate FS functions by curvilinear derivatives. For

the block tri-diagonal version, the only way to use the processor idle time is to execute the Thomas algorithm

in the next direction. For the third stage of the ADI, the data-dependent r.h.s, computations may be

performed.

3. Theoretical model of parallelization efficiency. A parallel machine model called the multi-

computer [7] is used here for the development of the model. A multicomputer comprises a number of von

Neumann computers, or nodes, linked by an interconnection network. Each computer executes its own

program. This program may access local memory and may send and receive messages over the network.

Messages are used to communicate with other computers or, equivalently, to read and write remote memo-

ries. In the idealized network, the cost of sending a message between two nodes is independent of both node

location and other network traffic but does depend on message length. Although the most important case

for parallel computing is 3-D, we start with the 2-D case and further use the same technique to build the

theoretical model for the 3-D case.

3.1. 2-D case. The parallelization efficiency is estimated for a square computational domain covered

with Nd x Nd equal load-balanced subdomains with N x N grid nodes per subdomain Each subdomain belongs

to a different processor. A single PDE to be solved and the FS method (2) with tri-diagonal matrices in each

direction are assumed. Extensions to a 3-D case and global computational domain with an unequal number

of grid nodes in each direction will be considered in the next subsections.

The communication time for a single message between two processors in the network can be approximated



bythefollowinglinear expression [9], [10]:

(7) f(L) = bo + blL,

where b0 and bl are communication coefficients and L is the le_lgth of the string in words.

In this section, the additional (penalty) time required for _ single FS time step due to communication

and idle time of processors is estimated. This penalty time is defined as

(8) F = Tparallel -- Tserial/ND,

where Tparaud is the actual elapsed time per processor on a MIMD computer, and TseTi,z is the actual

elapsed time on a single processor. The function F is composed of three main contributions:

F1 - the communication time due to the transfer of the forward step coefficients and the backward step

solution of the Thomas algorithm.

F2 - the idle time due to waiting for communication with the neighboring processor.

F3 - the communication time due to the transfer of the values of the FS variables between neighboring

subdomains.

For the square subdomains considered with N x N grid nodes, the quantities F1 - F3 are given by

(0) F1 = Ls(FN/Kll(bo + 2b1K1) + FN/K21(bo + blKs)),

where IN/K11 and IN�Ks1 are the number of messages for the forward and backward steps, respectively,

L8 is the index of the partitioning scheme (2 for 2-D and 3 for 3-D), K1 and Ks are the number of lines per

message for the forward and the backward step computations.

The expression of F1 is the same for the proposed and the basic algorithm as the same data must be

transfered. However, the optimal values of K1 and Ks are different for these algorithms (see below).

There are two reasons why the current processor has to wait for its neighbors:

1. Neighboring processors are synchronized due to the exc lange of values of FS variables: the (I, j)th

processor completes its backward step computations for the last K2 lines later than the (I, J+ 1) th processor.

At the next time step, these processors must exchange interface values of the intermediate FS function.

Therefore the (I, J + 1) _h processor has to wait for the (I, j)_h processor.

2. If data-dependent computational tasks are scheduled while processors become idle, processors might

be idle waiting for the completion of the first group of lines (se, • Fig. 3). This idle time is equal to the time

difference between the completion of the first portion of lines t y the backward step and the completion of

all lines by the forward step.

The delay time of the current processor is determined as the maximum of these two delays:

(10) FSA = LB. max(NK2g2, (2(Nd -- 1) + [pl)NKlgl - N2gl).

First, let us consider that the first reason of delay dominates and thus

(11) FSA = LsNK2g2 (= LsN_lgl).

For the basic algorithm the global synchronization occurs twice per spatial step due to a pipelining

property of the Thomas algorithm:

(12) F2B = Ls( Nd - 1)N (Klgl -_. K2gs).



A processor sends the interface values of the intermediate FS functions to the neighboring processors at

each spatial step. Thus, each processor sends 2Ls messages with length N per spatial step. The communi-

cation time for transfer of the variables between neighboring processors is

(13) F3 = 2Ls(b0 + biN).

The term Fa does not depend on K.

Generally, computational times per grid point are different for the forward step and for the backward

step computations of the Thomas algorithm. For the IB-PTA the computational work per group of lines

should be the same for the forward and the backward step computations:

(14) NKlgl=NK2g2,

where gl and g2 are the computation times of the forward and backward steps of the Thomas algorithm per

grid point. Thus,

(15) g 2 = [glgl] .

]g2 ]

The penalty function F depends on the following parameters: the number of grid points in one direction

per subdomain N, the number of subdomains ND, the computation times the Thomas algorithm per grid

point gl and g2 and the communication coefficients bo and bl. This function for the proposed algorithm is

given by FA = F1 + F2A + F3 and for the basic algorithm FB = F1 + F2B + F3. The theoretical value of

parallelization penalty function per grid point is defined as

F
(16) PnM- x 100%.

govN L_

The way to seek such values of K2 that minimize F is to solve the equation

(17) OF/OK2 = O,

where 1 < K2 < N. In order to facilitate this operation the discrete function Fx7 is replaced by x in the

following discussion. For the proposed algorithm using the IB-PTA the optimal K2 value is given by

(18) KI,IB-PTA = j(1 + p)"ylfl, K2,IB-PTA = V/_ + p)"[,

where _ = bo/g2 is the ratio between the communication latency and the characteristic computational time

per grid node and p = gl/g2 is the ratio between the forward and the backward step computational times.

The corresponding value of the paraUelization penalty FA is

(19) FA = Ng2(4X/r-_ + p) + 6T + 4(_/N + T)).

For the basic algorithm the optimal K1 and K2 values are given by

(20) K1,B = -- 1)' K2,B = Nd -- 1

and the corresponding value of the parallelization penalty function:

(21) FB = Ng2(4VLT(Nd - 1)(1 + v/p) + 6T + 4("//N + _')).



Theratioof first componentsof the FB and the FA which are the leading terms for large 3' and N is

given by

x/_- 1(1 ÷ vP)
(22) R1 --

v_+p

The multiplier C1 -- (1 + v_)/Vq-.[, p reaches its maximum x/_ if the computational times per grid

node are equal for the forward and the backward steps (p = 1). For the bound case gl >> g2(P _ oo), the

multiplier C1 ---* 1.

The ratio of paraUelization penalties for the large N is expressed by

FpTA El ÷ F2,PTA ÷ F3 R1 -[-62
(23) R2 -- - _ --

FIB-PTA F1 + F2,IB-PTA ÷ F3 1 + C2 '

where C2 = 2.5z/X/'--_ + p) <_ 2.5r/v/_.

Thus, the ratios R1 and R2 are O(N 1/2) with the factor 1 < C1 _< v/2.

Now we have to verify when the first term in Eq. (10) dominates, i.e.,

(24) (2(N d - 1) + [pl)Nglgl -- N291 <_ NK2g2.

Using Eq. (14), the above inequality becomes

(25) K1 < Kl,r, K2 <_ K,_,r,

where gl,_ = N/(2(Na - 1) + [p] - 1), K2,r = pN/(2(Nd - 1) 4- [p] - 1). By substituting Eq. (18) for K2A

in the above inequality, we obtain a condition when the first term in Eq. (10) dominates:

pN(26) + _<
2(Nd - 1) ÷ _p_ - 1'

If this inequality is satisfied, Eq. (19) and ratios (22, 23) are wlid. The critical value of N depends linearly

upon Nd :

(27) N_. = (2(Nd -- 1) + [p])v_l .[. P)3'/P.

Assuming that the second term in Eq. (10) dominates, we obtain the optimal value of K from the

condition OF/OK = 0 to give

/ (1 + P/_

(28) K2A = V2(Na---1) T Pl"

For the case considered, the condition K_A >_ K2,r is expressed by

(1 + p)_/ pN(29) 2(gd - 1)+ Fpl >- 2(Y - 1)+ [Pl"

Therefore, the expression for N'r is given by

(30) Nc_r = V/2(Na - 1) ÷ [Pl v/_ + p)"y/p = P_r/V/2(Nd - 1) ÷ [Pl"

Thus, there are three cases in terms of the optimal number 3f lines solved per message. For N > Nor or

if data-independent computations are scheduled while processo" s are idle, the optimal K values are defined

10



by (18).ForN'cr <_ N <_ Nor, the optimal K values are equal to Kr (see (25)). The values Kl,r and K2,_

correspond to the case when the backward step computations for the first portion of lines are completed

immediately after conclusion of aU the forward step computations on the first outermost processor. However,

for Nc_r > N these K_ do not give the minimum to the penalty function. In this case thc optimal K are

defined by Eq. (28), and processors become idle from the conclusion of the last group of lines by the forward

step till the beginning of the first group of lines by the backward step. Finally, the value of parallelization

penalty is given by

(31)
( Ng2(4x/_ + p) + 6T + 4(.y/N + T)) if N >_ Nor

2pN iFA = Ng2(2(I+P)7(2(Nd-1)+[Pl-1) _4_ -_-67 + 4(7/N + T)) if N'_ < N < Nc_
pN 2(Nd--1)+[p]--i -- --

Ng2(2V/(1 + p)'_(2(Nd -- 1) + [Pl -- 1) -- Np + 6T + 4('y/N + T)) if N < Nclr .

The asymptotic analysis of the above formulae and Eq. (27 and (30) for Nc_ and N_r leads to the

following expression for the asymptotic order of the parallelization penalty:

O(N) if O(N) > O(Nd)
(32) O(FA) : O(Nd) if O(Nd/2) < O(N) < O(Nd)

o(g)o(gJ/2) if O(Y) < O(NJ/2) .

Thus, for Nd, N ---* co the proposed algorithm has an advantage over thc basic algorithm unless O(N) <

O(NJ/2). In the last case both algorithms have the same order O(N)O(N j/2) (see Eq. 21)). The order of the

penalty function in terms of the overall number of nodes and the overall number of subdomains (processors)

is given by

O(N[/2)/O(ND/2)
(33) O(FA) = O(N 1/2)

O(N[/2)/O(ND/a)

if O(Ntot) > O(N_)

if O(N3D/2) < O(Ntot) < O(N_)

if O(Ntot) < O(N_/2) ,

where Ntot = (N > Nd) 2 is the overall number of nodes and No = N_ is the overall number of processors.

The previous case corresponds to the data-dependent computations scheduled while processors are idle.

Now we will analyze a case where part of computations scheduled to be executed while processors are idle is

data-independent. In this case the second term in Eq. (10) becomes

(34) (2(Nd - 1) + [p])NKlgl - (1 + _)N2gl,

where c_ = gdi/gl is the ratio of the data-independent computational time gdi to thc forward step com-

putational time per grid node. The data-dependent computations are scheduled to be executed first while

processors are idle from the Thomas algorithm computations. The expression for KI,_ is given by

N(1 + a)

(35) gt,r = 2(Na - 1) + [p] - 1"

The expressions for the critical numbers are divided by (1 + c_) in Eq. (27,30). Asymptotic results (32)

are the same as for the previous case of the data-dependent computations scheduled while processors are

idle. However, the parallelization penalty is reduced:

{ Yg2(4V_ + p) + 6"r + 4("//N + T)) if g >_ Nc,-
FA N- /2(1-{-p)y(2(Nd-1)T[p]-l) 2pN(1wcl) !

: Y2k pN(l+a) "_- 2(Na-1)+[p]-I -{- 6T -{- 4(7/N + 7-)) if N_ _< N < Nc_

gg2(2V/(1 + p)'_(2(Nd -- 1) + [p] -- 1) -- g(1 + c_)p + 6T + 4(7/N + _')) if N < N'_ .

11



3.2. 3-D case. In this case a cubic domain is divided regularly into cubic subdomains with N x N x N

grid nodes each one. The parallelization penalty function is composed of the same components as in the

previous 2-D case:

(36) 1=1= L_(rN2/Kq(bo + 2b1K1)+ rN: /K21(bo + bzK2)),

(37) F2A = L.,max(NK2g2, (2(Nd -- 1) + [pl)NKzgz - N3gl),

(38) F3 -- Ls(bo + b,N2).

Thc number of grid nodes at an interface boundary is equal to N 2 and not to N as for the 2-D case; therefore,

N is replaced by N 2 in the components of the parallelization penalty.

The parallelization penalty component F2B is the same as in the 2-D case, and the parallelization penalty

for the basic algorithm is

(39)

where the optimal K values are

(40)

If the first term in Eq.

(18) and arc given by

FB = Ng2(6V/"/N(Nd - 1)(1 + v_) + 9*-N + 6(",//N + _rN)),

@p N_ N7iK1,B = (N_-- 1)' g2,B = Nd -- 1"

(37) dominates, the optimal K values for the proposed algorithm are analogous to

(41) KI,A = v/N(1 +p)7/p, K2,A = /N(1 +p)%

The bound values Kl,r and K2,r are

(42) K,,_ = N2/(2(Nd-1)+ rpl),K_,_=PA'2/(2(Nd - 1)+ FPl).

Using expressions (41, 42), the critical number of nodes per su[ domain in one direction is obtained:

(43) Nc_= [(2(Nd--

The values of K_, A and N_are

(44)

1)+[p] _ 1)2(1+p)?) 1 1/3

p2 J

No1-

!

, / N(l+p)7 ,

K2'A : V2(Nd-- 1)+ [p]' N_ = (2(N,_-1)+ [pl- 1) 1/3'

The final expression for the parallelization penalty of the propo _ed algorithm in the 3-D case is

Ng2(6v/NT(1 + p) + 9Nv + 6(7/N + NT))
(45)FA = Ng2( 30+_)_(2(Nd-D+FpD + 3_N_pN 2(Nd_l)+[p 1 + 9NT + 6("//N + N'r))

Ng2(3v/N(1 + p)"y(2(Nd -- 1) + [Pl) -- N2p + 9N'r + 6(_//g + g'r))

if N _> Nc_

if N_cr < N < Nc_

if N < Nclr .

The asymptotic analysis follows a pattern very similar to that of the previous subsection:

(46)

O(N

O(N 2)
O(FA) = O(Nd)

O(N3/2)O(NJ/2)

if O(N) > 9(Nd/3)

if O(NJ/2) < O(N) < O(N_/3)

if O(N_/a) < O(N) < O(Nd/2 )

if O(N) < O(NJ/3) .

12



If N falls into N_r _< N _< Nor (the second line in (45)) then the following cases are considered: O(N_/2) <

O(N) < O(N 2/a) and O(NJ/3) < O(N) < O(NJ/2). In the former case the leading term is the first

component whereas in the latter one the leading term is the NT component.

The asymptotic analysis of the parallelization penalty for the basic algorithm (39) leads to the following

expression

O(N ) if O(N) > O(Nd)(47) O(FB) = O(N3/2)O(NJ/2) if o(g) < O(Nd) •

Thus, the proposed algorithm has an advantage over the basic one if O(Nd/3 ) < O(N) < O(Nd). Oth-

erwise, both algorithms are of the same order. If O(N) > O(Nd), the main component in the parallclization

penalty becomes 15N'r. This component characterizes the amount of transfered data which is the same for

these algorithms. If O(N) < O(NJ/3), the idle time between conclusion of the forward step computations

and completion of the backward step computations for the first group of lines becomes large and there is no

longer an advantage of the proposed algorithm over the basic one.

The order of the parallelization penalty function in terms of the overall number of nodes and the overall

number of subdomains (processors) is given by

{ O(N2/3)/O(Nff 3) if o(gtot) > O(N_/2)
(48) O(FA) = O(NID/3) if O(N_/3) < o(gtot) < 0(N3/2),

O(Nlt/2)/O(N2D/3 ) if O(Ntot) < O(N_/a) ,

where Ntot = (N x Nd) a is the total number of grid nodes and No = N 3 is the total number of processors.

The proposed algorithm has an advantage over the basic algorithm if O(N_/a) < O(Ntot) < O(N2).

3.3. 3-D domain with different number of grid points in each direction. The case with different

number of grid nodes in the x, y and z directions is considered here (N, _ N u ¢ N_). We will obtain

theoretically (where it is possible) the optimal cover of the computational domain with subdomains.

Consider first the case where the first term in Eq. (10) dominates; therefore, the parallelization penalty

for the proposed algorithm is given by

VNjNk] )(49) FA-= E \|([NjNklgi,1 | (bo+ 2blKi,t)+ i---k-_,2| (bo+blKi,2)+ NiKi,2g2W 2(bo+blNjNk)
i=1,2,3

where i, j, k are the spatial directions (i 7_ j 7_ k), Ki, Kj and Kk are the numbers of lines solved

per message in spatial directions, (in general, Ki _ Kj 7_ Kk). The first two terms in the above equation

represent the communication time due to the transfer of the forward step coefficients and the backward step

solution. Next term corresponds to the processor idle time due to the local synchronization. The last term

is equal to the communication time due to the transfer of the FS variables. We group the terms, use Eq.

(14) and replace [x] by x, which leads to the following expression:

(50) FA = E b0(1 -t- P)--_i.2 + NjKj,2g2 + 5bl E NjNk + 6b0.
i=1,2,3 ' i=1,2,3

Both sums in the above equation will be estimated by the following known inequality:

n n

(51) Eai >_n(Iladl/,,,
i=1 i=1

13



where _/_=ia� = nCYI_=1a/)Wn for equal a,.

The estimationforthe second sum in (50)isgiven by

(52) E (NjNk) > 3(NiNjNk) 2,3 = 3No2/3,
/=1,2,3

where No_ = NiNjNk is the overall number of grid nodes per subdomain. This sum is minimal if Ni = Nj =

Ark = N, i.e., if the subdomains are cubic. The first sum is estimated by

(53) E (1 + p)boNjNk/gi,2 + N/gi,zg2) > 6(b092(1 + p)N/NjNk) 1/2 = 6(b0g2(1 +/))Nov) 1/2.

/=1,2,3

This inequality turns into equality if Ni = Nj -- Ark = N and h'2 satisfies Eq. (41). Thus, the partitioning

by cubic subdomains gives the minimum parallelization penalty. In this case, the optimal number of solved

lines per message is the same in all directions, and the parallelization penalty is equal to the value stated in

the first line of (45)

The paralleliza_,, ,_: penalty for the basic method is

(bo+ + [UjU ] (bo+
FB= E |_| |_| , 1)Ni(Ki,igl+Ki,2g2)+2(bo+biNjNk),

_=1,2,3

where Nd,i is the number of subdomain partitioning in the i th direction. We can show (see above), that the

FB reaches its minimum if Ni = Ny = Nk. In this case, opt/toni K values are given by

i _N _/ _/N(54) K,,1 = p(Nd,i- 1)' K/,2 = (Na,i - 1)"

Thus, for the basic algorithm the optimal cover is also composeq of cubic subdomains; however, the optimal

K values may be different for different directions. Therefore, fo_ both algorithms the number of subdomains

in each direction is proportional to the number of grid nodes in this direction, i.e., Nd,_ : Nd,u : Nd,_ =

Ntot_ : Ntotu : Ntotz.

For the basic algorithm the penalty function for optimal K values is given by (39), where 6(Nd -- 1) is

replaced by 2 Ei=1,2,3 Nv/r_, / - 1. This sum can be estimated by

(55) _>3N /o.
i=1,2,3 i=x,y,z

Thus, for the basic algorithm the parallelization penalty reaches its minimum for a cubic global domain. For

the proposed algorithm, the parallelization penalty is invariant with respect to the number of nodes in each

direction (see the first line in Eq (45)). This represents an additional advantage of the proposed algorithm
over the basic one.

If the values of K are equal to bound values Kr (42), then the cubic subdomains no longer give the

minimum paraUelization penalty for the proposed algorithm. H)wever, partitioning by cubic subdomains is

chosen in this case as a fair assumption.

4. Numerical solution of the sample problem. The p_rallelization method and the model for the

parallelization efficiency are tested by a numerical solution of a benchmark problem. The non-stationary

Laplace equation in the cube f_ = [-1 < x < 1] × [-1 < y < 11 × [-1 < z < 1] is chosen as the test case.

The PDE to be solved is

(56) dU 02U 02U 02U
d-t = az Ox---_ + au _ + e z Oz--T,

14



TABLE 1

Charactemstic parameters of MIMD computers

Computer

CRAY T3E

IBM SP

parameters of communication

bo, #S bl, #S/Word g2, tzS

18 0.1 0.36

70 0.05 0.28

non-dimensional parameters

P=gl/g2 "Y--bo/g2 T=bl/g2

1.71 50. 0.28

1.42 250. 0.18

where a_, ay and az are non-linear functions of U. There are the following boundary and initial conditions:

(57) V (x,y,z)•_ U(x, y, z, 0) = 0,

V (x,y,z)•Oi2 U(x,y,z,t)=l.

The MIMD computers used in this study are installed in the San Diego Supercomputer Center (SDSC)

at the University of California, San Diego [14]. SDSC's CRAY T3E has 272 (maximum 128 for a single task)

distributed-memory processing elements (PEs), each with 128 megabytes (16 megawords) of memory. Each

processor is a DEC Alpha 21164 (300 MHz clock). The T3Es run the UNICOS/mk operating system. The

T3E PEs are relatively inexpcnsivc, with fast processing ability but slow main memory. The theoretical limit

of 600 Mflops for the 300 Mhz processors of the SDSC T3E applies only to certain operations within the

registers of the processor. The IBM SP has 128 (maximum 120 for a single task) thin node POWER2 Super

Chip (P2SC) processors with 256 MBytes of memory on each processor. The SP processors are superscalar

(implying simultaneous execution of multiple instructions) pipelined chips and are capable of executing up

to six instructions per clock cycle and four floating point operations per cycle. These nodes run at 160 Mhz

and are capable of a peak performance of 640 MFLOPS each.

Our measurements of communication times (b0 and bl) for the CRAY T3E and the IBM SP computers

are presented in Table 1. The maximum length of string is 1000 words. The sample size is 100 messages

for each string. Communication time is the time required to receive a message of L words which sent from

another processor. These measurements confirm the linear approximation (7) for the communication time.

Computational times are obtained from computational experiments on a single processor. Fortran com-

piler CF90 with the third optimization level is used on the CRAY T3E. The Fortran compiler on the SP is

IBM's XL Fortran, also known as xlf. The cash locality is exploited in our computer code, i.e., the "implicit"

direction (index i in Eqs. (4,5)) corresponds to the last index in working arrays for the Thomas algorithm

computations in all three directions. The values of p are different for CRAY T3E and IBM SP computers

as ratios between arithmetic operations are compiler- and computer- dependent.

4.1. Description of a multi-processor code. The code is designed as follows. First, the optimal

number of grid lines to be solved per message (i.e., the optimal number of groups of lines) is computed as

described in the previous section. Then, processors are scheduled in each direction according to the algorithm

described in [6]. These one-directional schedules and schedules of the local computations are joined together

to use the processor idle time according to recommendations presented in the second section. Thus, the

static schedule of processors is formed.

The solver part of the code (Appendix A) does not depend upon a particular schedule of processors.

The functions handling communications are referenced in a common form without relation to any specific

message-passing system. The external loop with the loop variable IPX execute lines group-by-group. The

15



array ICOM governs communication with six closest neighb3rs of the current processor.

ICOM(IPX, I) controls type of communications, as follows:

The value of

0 processors (o not communicate

(58) ICOM(IPX, I) -- 1 send
2 receive

3 simultaneous send and receive

where I--1,...,6. The send and receive operations transfer either the forward step computations or the

backward step solution. Before the computations for the current group of lines are executed, each processor

has completed exchanging data with its neighbors. The only d;_ta used for the computations at the current

time unit are transfered to the processor. At the backward step of the Thomas algorithm computed values

of the solution are transfered to the processor ahead after they -lave been computed in the current processor

at the previous time unit. These values are stored in the array SF. At the forward step interface values

of the coefficients are not transfered immediately after they have been computed; therefore, these values

are extracted from matrices of the forward step coefficients DX and GX where they are stored. Pointers

J3X, J3Y and J3Z control these data streams in the directimts x, y and z, respectively.

After communications have been completed, computations _re executed according to the value stored in

the array, ITX (see (6)). The local, forward and backward ste!) computations are executed in sub-routines

COEF, FRWD and BCWD, rcspeetively.

4.2. Results of multiprocessor runs. Results of multiprocessor computer runs are shown in Tables

2a,b for CRAY T3E and IBM SP computers, respectively. The number of grid nodes per subdomain varies

from 10 a to 203 for the CRAY T3E and from 123 to 203 for the SP computer. The computational domain

is covered with 33, 43 or 53 equal cubic subdomains. Therefore, the total number of grid nodes varies from

27 x 103 (46.5 x 103 for the SP computer) to 106.

Processors compute coefficients au and a_ while they are idle from the Thomas algorithm in the x and

y directions. These computations are data-independent. In this particular case a = 1.2 for the CRAY T3E

and a -- 1.3 for the SP computer (see Eq. (34)). The data-dependent computations of the coefficients a_

are executed while processors are idle in the z direction. The optimal K values in each direction for the

proposed algorithm are computed by one of the Eqs. (41) (42), (44). These methods and denoted as 1,2

and 3, respectively, in Tables 2a,b. For the basic algorithm, ,otimal values of K are computed by (40).

The values of K for the proposed algorithm are greater than th)se for the basic algorithm that confirms an

advantage of the proposed algorithm in terms of the number of messages.

The parallelization penalty (Pn) is obtained by

(59) Pn- Tp -7"1 x 100!:_,
T1

where Tp and T1 are measured computational times on P pr(.cessors and on a single processor with the

same size of subdomaln, respectively. The parallelization penalty obtained from computer experiments is in

good agreement with that computed by the theoretical model (1,;). The difference between experimental and

theoretical values increases with the decrease in the number of gri :! nodes per processor. This can be explained

by those details of the computer architecture that are not take n into account in the developed theoretical

parallelization model. To match theoretical and experimental results for the SP computer, experimental

data are filtered. If the elapsed time for a time step is 30% gre Lter than the averaged value, this time step

is excluded from the sample. These time steps make 3 - 5% of overall sample. The parallelization penalty

16



for thebasicalgorithmisapproximatelytwiceasmuchthat fortheproposedalgorithmfortheconsidered
rangeof thenumberofnodesperprocessorandthenumberof processors.

Toestimatetheparallelizationpenaltyforthelargenumberofprocessorswhicharenotavailableyetwe
computethetheoreticalparallelizationpenaltyfor 10 3 processors and present these results in Tables 2a,b.

The ratio of parallelization penalties of the basic and the proposed algorithm increases with the number of

processors.

Finally, the computer runs are executed for an unequal number of grid nodes in various directions. The

partitionings are 8 × 4 × 2 and 16 × 2 × 2, the total number of processors is equal to 64. The parallelization

penalty for the basic algorithm is greater for the considered cases than for the 4 3 partitioning; however, for

the proposed algorithm parallelization penalty is almost equal to that for the 43 partitioning. This confirms

the theoretical conclusions of subsection 3.3.

5. Conclusions. A parallel implicit numerical algorithm for the solution of directionally split 3-D

problems is proposed. This algorithm provides exactly the same solution as its serial analogue at each time

step. While executing this algorithm, processors run in a time-staggered way without global synchronization

in each direction. The proposed algorithm uses the idle processor time either for computations of discretized

coefficients of the PDE to be solved or for the Thomas algorithm computations in the next spatial direction.

To make the algorithm feasible, the reformulated version of the pipelined Thomas algorithm is used.

Static scheduling of processors is adopted in this study. Various computational tasks which may be

executed while processors are idle from the Thomas algorithm in the current direction are discussed and

recommendations about optimal scheduling of processors are drawn.

A theoretical model of the parallelization efficiency is developed. This model is used to estimate the

parallelization penalty for the basic and the proposed algorithms. The optimal number of lines to be solved

per message is defined by this model. The asymptotic analysis shows the relations between the number of

grid nodes per subdomain and the number of processors which ensure an advantage of the proposed algorithm

over the basic one. Finally, this model is used for the optimal partitioning of a computational domain with

an unequal number of grid nodes in spatial directions.

The parallel computer code uses the modular design technique: a schedule of the processor tasks is

assigned before computations by the numerical algorithm and communications are separated from compu-

tational modules. Experiments with the multidomain code in distributed memory multiprocessor systems

(CRAY T3E and IBM SP) show a reasonable parallelization penalty for a wide range of the numbcr of

grid nodes and the number of processors. The parallelization penalty agrees well with that obtained by the

theoretical model.

6. Acknowledgment. The author wishes to thank Professor David Keyes (ICASE and ODU) for useful

discussion about parallel numerical algorithms.

REFERENCES

[1] CH. HIaSCH, Numerical computation of internal and external flows, Vol. 1: Fundamentals o/numerical

discretization, John Wiley and Sons, 1994.

[2] D.A. CAUGHEY, Computational Aerodynamics, in Research Trends in Fluid Dynamics, J.L. Lumley et

al., eds., AIP Press, NY, 1996, pp. 55-59.

[3] J. HOFHAUS AND E.F. VAN DE VELDE, Alternating-direction Line-relaxation Methods on Multicom-

puters, SIAM J. Sci. Comput. 17, No. 2, (1996), pp. 454-478.

17



[4] NAIK, N.H., NAIK, V.K. AND NICOULES, M., ParaUelizt_tion of a Class of Implicit Finite Difference

Schemes in Computational Fluid Dynamics, Int. J. of tIigh Speed Computing 5, No. 1, (1993), pp.

1-50.

[5] F.F. HATAY, D.C. JESPERSEN, G.P. GURUSWAMY, ET AL., A multi-level paraUelization concept for

high-fidelity multi-block solvers, Technical paper presented in SC97: High Performance Networking

and Computing, San Jose, California, November 1997, http://www.hal.com/users/hatay.

[6] A. POVITSKY, ParaUelization of the pipelined Thomas a'gorithm, ICASE Report No. 98-48, NASA

Langley Research Center, Hampton, VA.

[7] IAN FOSTER, Designing and Building Parallel Programs, Addison-Wesley, 1995,

http://www.mcs.anl.gov/dbpp/.

[8] W.D. GROPP AND D.E. KEYES, Complexity of Parallel Implementation of Domain Decomposition

Techniques for Elliptic Partial Differential Equations, SIAM J. Sci. Stat. Comput. 19, No. 2, (1988),

pp. 312-326.

[9] A. POVITSKY AND M. WOLFSHTEIN, Parallelization Efficiency of CFD problems on a MIMD computer.

Computers and Fluids 26, No. 4, (1997), pp. 359-371.

[10] SH. H. BOKItARI, Multiphase Complete Exchange on Paragon, SP2 and CS-2, ICASE Report 95-61,

NASA Langley Research Center, Hampton, Virginia 23681-0001, 1995.

[11] T.H. PULLIAM AND J.L. STEGER, Recent improvements in efficiency, accuracy and convergence for

implicit approximate factorization algorithms, AIAA Paper 85-0360, AIAA 23rd Aerospace Sciences

Meeting, Reno, 1985.

[12] R.W. BEAM AND R.F. WARMING, An implicit finite difference algorithm for hyperbolic systems in

conservation form, Journal of Computational Physics 23, (1976), pp. 87-110.

[13] T.H. PULLIAM AND D. CHAUSSEE, A diagonal form of an _mplicit approximate-factorization algorithm,

Journal of Computational Physics 39, (1981), pp. 347-363.

[14] A National Laboratory for Computational Science and Engineering, San-Diego, http://www.sdsc.edu.

18



Appendix A

Fragment of computer code which performs the solver of the proposed algorithm

c

c loop by portions of lines solved per one message

c

DO IPX=I,IEND

c

c ********** logistics of communications ***************************

c

ICOMT=ICOM(IPX,I)

c a. receive from neighboring processors (only one receive is expected)

DO I=1,6

IF(ICOMT.GE.2) go to 62

END DO

go to 64

62

c

continue

receive forward step coefficients from previous subdomain

IF (I.LE.3) THEN

IF (ICOMT.E_.2) THEN

call recv(RF,2*Kl,nbr(I),itagf(I))

ELSE

call sendrecv(SF,K2,nbr(I),itagb(I),RF,2*K1,nbr(I),itagf(I))

END IF

go to 64

END IF

c receive backward step solution from subdomain ahead

IF(I.GE.4) THEN

II=I-3

IF(ICOMT.EQ.2) THEN

call recv(RF,K2,nbr(I),itagb(I1))

ELSE

IF(I.EQ.4) call STORE(SF,DX,GX,J3X)

IF(I.EQ.5) call STORE(SF,DY,GY,J3Y)

IF(I.EQ.6) call STORE(SF,DZ,GZ,J3Z)

call sendrecv(SF,2*Kl,nbr(I),itagf(ll),RF,K2,nbr(I),itagb(II))

END IF

END IF

64 continue

c b. send to neighboring domains

DO I=1,6

IF (ICOM(IPX,I).EQ.I) then

IF (I.GE.4) THEN

c send forward step coefficients

I1=I-I

IF(I.EQ.4) call STORE(SF,DX,GX,J3X)

IF(I.EQ.5) call STORE(SF,DY,GY,J3Y)

19



IF(I.EQ.6)call STORE(SF,DZ,GZ,J3Z)

call send(SF,Kl,nbr(I),itagf(I1))

END IF

c send backward step solution

IF(I.LE.3) call send(SF,K2,nbr(I),itagb(I))

END DO

c

c _._**_***** logistics of computations

c

IF (ITX(IPX).EQ.4) THEN

c computations of coefficients

IF(IDIR.EQ.1) call CDEF(AX,BX,CX)

IF(IDIR.EQ.2) call COEF(AY,BY,CY)

IF(IDIR.EQ.3) call C0EF(AZ,BZ,CZ)

END IF

c forward step computations

IF (ITX(IPX) .EQ. 1) call FRWD(DX,GX)

IF (ITX(IPX).EQ.2) call FRWD(DY,GY)

IF (ITX(IPX).EQ.3) call FRWD(DZ,GZ)

c backward step computations

IF (ITX(IPX).EQ.-I) call BCWD(VX,DX,GX)

IF (ITX(IPX).EQ.-2) call BCWD(VX,DY,GY)

IF (ITX(IPX).EQ.-3) call BCWD(VX,DZ,GZ)

END DO

2O



3 b 3

---> ___>

3 3 3 3

---> ---> ---> --->

3 3 3 3 3 3

---> ---> ---> ---> ---> --->

3 3 3 3 3 3 3 3

---> ---> ---> ---> ---> --->

3 3 3 3 3 3 3 3

---> ---> ---> ---> --->

3 3 3 -3 3 3 3 3

---> <--> ---> ---> --->

3 3 -3 3 3 3 3 3

<--> ---> ---> --->

3 -3 3 -3 3 3 3 3

<--> <--> ---> ---> --->

-3 3 -3 3 3 3 3 3

<--> ---> ---> ---> --->

3 -3 3 3 0 3 3 3

<--> ---> ---> --->

-3 3 3 -3 0 0 3 3

---> <--> --->

4 3 -3 3 0 0 0 3

<-->

4 -3 3 -3 0 0 0 -3

<--- <--> <---

-3 4 -3 3 0 0 -3 -3

<--> ---> <--- <---

4 -3 3 3 0 -3 -3 -3

<--- <--- <--- <---

-3 4 4 -3 -3 -3 -3 -3

<--> <--- <--- <---

4 4 -3 3 -3 -3 -3 -3

<--- <--- <--- <---

4 -3 4 -3 -3 -3 -3 -3

<--- <--- <__- <--- <---

-3 4 -3 4 -3 -3 -3 4

<--- <--_ <---

4 -3 4 4 -3 -3 4 4

<--- <___

-3 4 4 4 -3 4 4 4

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

3 4 4 4 4 4 4 4

3 3 4 4 4 4 4 4

3 3 3 4 4 4 4 4

4 4 4 1

4 4 1 1

4 1 1 1

FIG. 1. The processor schedule: (a) The IB-PTA is used for the z direction, processors compute local coei_icients of the

non-linear PDE while they are idle from the IB-PTA; (b) the basic PTA algorithm is used, processors are idle between the

forward and backward steps. Na = 4, L I = 9, Lb = 6

21



ao

1 1 1 1 1 1 1 1 1 1 1 1 2 2

2 2 2 2 2 2 2 2 2 2 3 3 3 3

3 3 3 3 3 3 3 3 4 4 4 4 4 4

4 4 4 4 4 4 5 5 5 5 5 5 5 5

5 5 5 5 6 6 6 6 6 6 6 6 6 6

6 6 7 7 7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 9 9

9 9 9 9 9 9 9 9 9 9 10 10 10 10

10 10 10 10 10 10 10 10 11 11 11 11 11 11

11 11 11 11 11 11 12 12 12 12 12 12 12 12

12 12 12 12 13 13 13 13 13 13 13 13 13 13

13 13 14 14 14 14 14 14 14 14 14 14 14 14

15 15 15 15 15 15 15 15 15 15 15 15 16 16

16 16 16 16 16 16 16 16 16 16 17 17 17 17

Z

I__y

b.

1 1 2 3 4 5 6 8 10 11 12 13 15 16

1 1 2 3 4 5 6 8 10 11 12 13 15 16

1 1 2 3 4 5 6 8 10 11 12 14 15 16

1 1 2 3 4 5 6 8 10 11 12 14 15 16

1 1 2 3 4 5 6 8 10 11 13 14 15 16

1 2 2 3 4 6 6 9 10 11 13 14 15 16

1 2 2 3 4 6 7 9 10 12 13 14 i5 16

2 2 2 3 4 6 7 9 10 12 13 14 15 16

3 3 3 3 5 6 7 9 11 12 13 14 15 16

4 4 4 4 5 6 7 9 11 12 13 14 15 16

5 5 5 5 5 6 7 10 11 12 13 14 15 17

7 7 7 7 7 7 7 10 11 12 13 14 15 17

8 8 8 8 8 8 8 10 11 12 13 14 16 17

9 9 9 9 9 9 9 10 11 12 13 14 16 17

Z

I__X

FIG. 2. Gather of lines in groups. (a) The Thomas algorithm in tl e y direction is executed while processors are idle

computing the Thomas algorithm in the x direction; (b) In addition, the Tt:omas algorithm in the z direction is executed while

processors are idle computing the Thomas algorithm in the y direction. N '_mbers denote the group of lines to which this line

belongs.

22



I

---),

1 1

---> --->

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 -1

---> ---> ---> <-->

1 1 1 1 -1 1

---> ---> <-->

0 1 1 -1 1 -1

<--> <-->

0 0 -1 1 -1 1

<--> <--:. ---),

0 -1 1 -1 1 1

-1 2 -1 1 1 -1

< ...... ), <--:_

2 -1 2 1 -1 1

-1 2 2 -1 1 -1

2 2 -1 2 -1 1

<--- <--> ---)

2 -1 2 -1 1 1

-1 2 -1 2 2 -1

2 -1 2 2 -1 1

-1 2 2 -1 2 -1

2 2 -1 2 -1 2

2 -1 2 -1 2 2

-1 2 -1 2 2 2

2 -1 2 2 2 2

-1 2 2 2 2 2

2 2 2 2 2 2

2 -2 -2 2 2 2

-2 -2 -2 -2 2 2

-2 -2 -2 -2 -2 2

FIG. 3. The processor schedule: processors compute the for'ward step of the Thomas algorithm in the y direction while

they are idle from the Thomas algorithm computations in the x direction

23



TABLE2

Parallelization penalties for the benchmark problem, Ntot - total number of nodes, N - number of grid nodes per subdomain

in a single direction, Kx, Ku and Kz - number of lines solved by backwarv step per message, Method - method of computation

of Kx, K_ and Kz values, respectively (1-by Eq. (41), _-b9 Eq. (4_) and 3-b9 Eq. (44)), Pn- penalty, obtained from

computational experiments (Eq. (59)); PnM- theoretical value of penalty (Eq. (16))

Ntot

a. CRAY T3E multiprocesscr system.

posed algorithm

_t-ho-d _ PriM, % _ PnM, %

27000 10 51 51 26

91125 [ 15 63 63 62

216000 20 74 74 74

64000

216000

512000

10 42 42 20

15 63 63 47

125000

421875

1000000

I0 35 35 17

15 63 63 38

1000000

3375000

8000000

10 19 19 10

15 40 40 I 19

64000

216000

512000

10 22 42 40

15 51 63 63

64000

216000

512000

10 11 51 4O

15 26 63 63

partitioning 3 x 3 x 3

112 52.41 39.90

112 23.80 19.97

111 _ 13.5(;

partitioning 4 x 4 x 1

222 _58.71 43.94112 31.10 21.34

111 15.19[ 13.56

pa_itioning 5 x 5 x 5

222 67.29 54.5_

112 33.84

112

partitioning 10 x

222 /_-- 92.6_
222 29.84

222 13.80

partitioning 8 x 4 x 2

222 56.74 42.37

211 23.12 20.89

111_ 13.56

partitioning 16 x 2 x 2

212 63.85 61.17

211 [ 28.39 25.76
/

211 _ 14.25

22 22 22 108.35

27 27 27 53.60

96.74

49.93

31.33

18 18 18 132.4 114.53

22 22 22 59.23 57.46

36.67

16 16 16 152.20

22.69 119 19 19170.17 I

13.01
10 x 10

11 11 11 -13 13 13

131.61

66.33

41.59

186.33

93.51

59.09

12 18 31 136.83

15 22 38 / 61.23

119.59

59.77

37.71

8 31 31 143.32 129.57

10 38 I 38 67.56 I 64.29

40.74

24



FormApproved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicreportingburdenforthiscollectionofinformationisestimatedtoaverage1 hourperresponse,includingthetimefo¢reviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionofinformationSendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionofinformation,includingsus_estionsfor reducingthisburden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsandReports.1215Jefferson
DavisHighway,Suite1204.ArllnKton,VA22202-4302.andto theOfficeofManagementandBudget,PaperworkReductionProject(0704-0188),Washington.DC20503.

1. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

October 1998 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Parallel Directionally Split Solver Based on Reformulation of Pipelined

Thomas Algorithm

6. AUTHOR(S)

A. Povitsky

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 98-45

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR- 1998- 208733

ICASE Report No. 98-45

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To be submitted to SIAM Journal of Scientific Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified- Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed

algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step
computations immediately after the completion of the forward step computations for the first portion of lines This

algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm.

The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-

local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical

model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic
parallelization penalty and to obtain an optimal cover of a global domain with subdomains.

It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the par-

allelization penalty about two times over the basic algorithm for the range of the number of processors (subdomalns)
considered and the number of grid nodes per subdomain.

14. SUBJECT TERMS

parallel computing; parallelization model; directionally split methods; pipelined Thomas
Algorithm; banded matrices; ADI and FS methods

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-5500

18, SECURITY CLASSIFICATIOI_
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAG.rq

30

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-8g
PrescribedbyANSIStd Z3CJ-18
298-I02



Ntot

b. IBM SP multiprocessor system.

_posed algorithm ! Basic algorithm

Method _ PnM,__ PnM, %

46656

91125

216000

110592

216000

512000

1728000

3375000

8000000

110592

216000

512000

110592

216000

512000

12 74 74 73 2 2

15 120 120 53 2 2

_ 11

12 62 62 62 3 3

15 87 87 39 2

partitioning 3 x 3 x 3

3 112.36 95.62

2 69.64 49.06

2 [ 38.97 _ 27.73

partitioning 4 x 4 x 4

3 129.45 115.14

2 2 93.46 70.73

1 2 43.85 I 32.04

partitioning 10 x 10 x 10

12 22 22 37 2 2 3 ] -
/

L15 35 35 43 2 2 3

222

12 27 62 91

15 43 87 103

12 30 117 91

15 22 134 103

264.81

146.53

68.04

pa_itioning 8 x 4 x 2

2 3 3 146.76 125.59

2 2 3 74.88 64.75

2 1 2 I 37.32 28.65

partitioning 16 x 2 x 2

3 2 3 182.76 169.87

2 1 3 99.45 90.93
2 1 2 I 52.17 I 41.49

1 I

54 54 54 207.19

61 61161112264
198.92

128.86

80.38

45 45 45 256.17

I 50 50 50 156.43

232.11

147.15

93.34

26 26 26 -

29 29 29 -

359.85

239.19

150.08

: 29 45 I 77 219.87 234.34
!

J_ 95.72

20 77 77 246.63 253.24

23 87 87 184.76 167.85

102.56

25


